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Abstract

Spacecrafts such as Stardust (NASA, 2006) are protected by an ablative
Thermal Protection System (TPS) for their hypersonic atmospheric entry.
A new generation of TPS material, called Phenolic Impregnated Carbon Ab-
lator (PICA), has been introduced with the Stardust mission. This new
generation of low density carbon-phenolic composites is now widely used in
the aerospace industry. Complex heat and mass transfer phenomena coupled
to phenolic pyrolysis and pyrolysis gas chemistry occur in the material dur-
ing atmospheric entry. Computer programs, as the Porous material Analysis
Toolbox based on OpenFoam (PATO) released open source by NASA, al-
low to study the material response. In this study, a non-intrusive Anchored
Analysis of Variance (Anchored-ANOVA) method has been interfaced with
PATO to perform low-cost sensitivity analysis on this problem featuring a
large number of uncertain parameters. Then, a Polynomial-Chaos method
has been employed in order to compute the statistics of some quantities of
interest for the atmospheric entry of the Stardust capsule, by taking into
account uncertainties on effective material properties and pyrolysis gas com-
position. This first study including pyrolysis gas composition uncertainties
shows their key contribution to the variability of the quantities of interest.
Keywords: Uncertainty Quantification, Anchored-Anova, Heat and mass
transfer, Thermal Protection Systems, Ablation, Pyrolysis,
Carbon/Phenolic composites



1. Introduction

Space exploration missions often include entering a planetary atmosphere
at hypersonic speed. A high enthalpy hypersonic shock forms around the
spacecraft and kinetic energy is progressively dissipated into heat [1]. Heat
is transferred to the surface of the spacecraft by radiation and convection.
A suitable heat shield is needed to protect the payload. The level of heat
flux increases with entry speed and atmospheric density. For fast hypersonic
entries, typically faster than 8 km/s from earth orbit, ablative materials are
used as Thermal Protection Systems (TPS). These materials mitigate the
incoming heat through phase changes, chemical reactions, and material re-
moval [2]. A low-density porous carbon/phenolic composite called PICA was
used for the Stardust comet-dust sample-return capsule, which reentered the
Earth’s atmosphere at 12.7 km/s [3]. PICA is made of a carbon fiber preform
partially impregnated with phenolic resin.

Virgin	
  
material	
  

Pyrolysis	
  
zone	
  

Abla3on	
  	
  
zone	
  
	
  

≈	
  400	
  K	
  

≈	
  1200	
  K	
  

≈	
  1400	
  K	
  

Coking	
  
zone	
  

≈	
  3000	
  K	
  

OH 

Phenolic polymer 

H2   + 

C6H6 + H2O 

C6 + 3 H2 

3 C2H2 

C (s) 

2 O 

O2 

2 C (s) + O2  
à  2 CO 

Chemistry	
  mechanisms	
  
(simplified	
  illustra;on)	
  

Scanning	
  Electron	
  Microscopy	
  (SEM)	
  of	
  
a	
  carbon	
  preform	
  before	
  phenolic	
  
impregna;on	
  

SEM	
  of	
  PICA	
  (virgin)	
  [Stackpoole,	
  2008]	
  

Boundary	
  
layer	
  

Non-­‐viscous	
  
flow	
  

Porous microstructure Flow/surface	
  interac;ons	
  
-­‐	
  Abla;on	
  (oxida;on,	
  sublima;on,	
  spalla;on),	
  	
  
-­‐	
  Heat	
  and	
  mass	
  surface	
  balance	
  (1)	
  
	
  
Subsurface	
  phenomena	
  (not	
  always)	
  
-­‐ 	
  Boundary	
  layer	
  gases	
  entering	
  in	
  the	
  material	
  (3)	
  
-­‐ 	
  In-­‐depth	
  oxida;on	
  (3)	
  

Heat	
  and	
  mass	
  transport	
  
	
  -­‐	
  Solid	
  density	
  conserva;on	
  (1)	
  
	
  -­‐	
  Steady-­‐state	
  gas	
  conserva;on	
  (1)	
  
-­‐	
  	
  Gas	
  density	
  conserva;on	
  (2)	
  
	
  -­‐	
  Gas	
  momentum	
  conserva;on	
  (2)	
  
	
  -­‐	
  Gas	
  element/species	
  conserva;on	
  (3)	
  
	
  -­‐	
  Energy	
  conserva;on	
  (1)	
  

Produc;on	
  phenomena	
  
-­‐	
  Pyrolysis	
  produc;on	
  rate	
  (1)	
  
-­‐	
  Pyrolysis	
  species/elements	
  produced	
  (3)	
  
-­‐	
  Chemistry	
  of	
  the	
  gases	
  (3)	
  
	
  

Long	
  distance	
  effects	
  
-­‐	
  Radia;on	
  

coking	
  

rad.	
  

Heat	
  

≈	
  6000	
  K	
  

1	
  :	
  in	
  all	
  material-­‐response	
  models	
  (type	
  1)	
  
2	
  :	
  in	
  some	
  material-­‐response	
  models	
  (type	
  2)	
  
3	
  :	
  in	
  detailed	
  material-­‐response	
  models	
  (type	
  3)	
  

M
at
er
ia
l	
  r
es
po

ns
e	
  
(P
AT

O
)	
  

Hy
pe

rs
on

ic
	
  fl
ow

	
   shock	
  

Figure 1: Phenomenology of porous carbon/phenolic ablative materials
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During atmospheric entry, carbon/phenolic materials undergo thermal
degradation and ultimately recession captured by the following physico-chemical
phenomena (Figure 1). The phenolic polymer thermally decomposes and
progressively carbonizes into a low density carbon form, losing mass while
releasing pyrolysis gases. The pyrolysis gases percolate and diffuse to the
surface through the network of pores. Reactions within the pyrolysis-gas
mixture (homogeneous reactions) and between pyrolysis gases and the char
take place with possible coking effects (heterogeneous reactions). Mixing and
reaction of the pyrolysis gases with boundary layer gases into the pores of
the material occur when boundary layer gases penetrate in the material by
forced convection or due to fast diffusion at low pressures [4]. At the surface,
the material is removed by ablation and the outer surface recedes. Depend-
ing on entry conditions, ablation may be caused by heterogeneous chemical
reactions (oxidation, nitridation), phase change (sublimation), and possibly
mechanical erosion (often called spallation).

A detailed heat and mass transfer model is required to estimate the perfor-
mance of the porous material and design the thermal protection system. Two
important design criteria are the expected level of recession and the maximum
back wall temperature. The key parameter uncertainties are propagated to
obtain the design uncertainties to be used in the margin policy [5]. A Monte
Carlo approach has been developed and used to propagate uncertainties on
material properties and areoheating conditions for the design of the NASA
Mars Science Laboratory [6] and Orion [7] spacecrafts. In these study how-
ever, no uncertainty is attributed to the pyrolysis gas composition. Recent
publications have shown that the pyrolysis gas composition strongly varies
depending on temperature and heating rate [8, 9, 10]. The pyrolysis gases are
composed of carbon, oxygen and hydrogen elements. The pyrolysis gas com-
position influences the pyrolysis gas enthalpy - which impacts heat transfer
in the porous material - and the boundary layer chemistry - which controls
the ablation rates and the surface temperature. For this first analysis we
will allow an uncertainty of 10% on these elements. The composition in term
of species is then computed in each cell of the mesh and at each time step
using an equilibrium chemistry solver [4]. This makes the computation very
costly and requires the use of the low-cost uncertainty quantification meth-
ods. In the literature, low-cost uncertainty propagation has been already
performed alongside Global Sensitivity Analysis for problems of natural con-
vection in [11]. Uncertainty analyses have also been performed on surface
ablation rates and their effect on aeroheating predictions for Mars entry in
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[12], and on ablation problems in plasma wind tunnel [13, 14].
In section 2, we present the problem studied and the physical hypotheses.

In section 3, we present the inverse analysis method implemented in the
study. The results of the uncertainty quantification analysis are presented in
section 4. Finally, section 5 draws some conclusions and perspectives.

2. Definition of the uncertainty analysis problem and hypotheses

For this first analysis, we chose to study the entry of Stardust, that was
the first mission using a low-density carbon-phenolic ablator in 2006. The
thermal response of the TPS has been be studied at the stagnation point
during the whole reentry, from entry interface to cool down. As in the state-
of-the-art design approach we assumed that the problem is locally mono-
dimensional. The actual thickness of the ablative material was two inches [3],
therefore we used this value. Adiabatic conditions are used at the bondline. A
convective boundary condition is used at the surface of the ablative material.
Surface total pressure and heat flux were taken from reference [15].

Figure 2 illustrates the temperature evolution during the atmospheric
entry at the stagnation point and in-depth under the stagnation point with
nominal TACOT properties.

The analysis is performed using the properties of the Theoretical Ablative
Composite for Open Testing (TACOT). Its composition and properties are
comparable to PICA. Nominal TACOT properties are available in the open
literature [16]. Volume-wise, TACOT is made of 10% of carbon fibers, 10%
of phenolic resin, and is 80% porous.

2.1. Model
A generic heat and mass transfer model for porous media has been re-

cently developed and documented [17]. It is suitable to model ablative heat
shields. For the sake of conciseness, we only present a short summary in
this section. The model was developed for porous materials containing sev-
eral solid phases and a single gas phase. The detailed chemical interactions
occurring between the solid phases and the gas phase are modeled at the
pore scale assuming local thermal equilibrium. Homogenized models were
obtained for solid pyrolysis, pyrolysis species injection in the gas phase, het-
erogeneous reactions between the solid phases and the gas phase, and homo-
geneous reactions in the gas phase. The chemistry models were integrated
in a macroscopic model making use of volume-averaged governing equations
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Figure 2: Surface and in-depth temperatures obtained with nominal material and pyrolysis
gas composition parameters.

for the conservation of solid mass, gas mass, species (finite-rate chemistry)
or elements (equilibrium chemistry), momentum, and energy. The model is
implemented in the Porous material Analysis Toolbox (PATO), distributed
Open Source by NASA. First-order implicit finite-volume schemes in time
and space [18, 19], which have been shown to provide excellent convergence
and accuracy [20, 4], were used for the simulations presented in Section 4. In
this study, we used an equilibrium chemistry model that is equivalent to the
reference NASA TPS design model [21]. The current approach is to assume
that the elemental pyrolysis gas composition is fixed. To save on compu-
tational time, precomputed tables are used to obtain the gas composition
(species) and properties (enthalpy, viscosity, molar mass). In the current
study, we wish to vary the elemental pyrolysis gas composition. The pyrol-
ysis gas composition in term of species is therefore computed from pyrolysis
gas elemental composition in each cell of the mesh and at each time step us-
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ing an equilibrium chemistry solver, as described in [4]. The surface ablation
rate is computed using the thin film coefficient approach, also known as B’
approach, accounting for the change in pyrolysis gas composition injected in
the boundary layer [4].

2.2. Uncertain parameters and associated uncertainties
In previous studies, uncertain material property parameters have been

identified for PICA [6, 5, 22]. We decided to include the same uncertain
parameters in our study. We also added a set of new parameters to assess the
effect of the pyrolysis gas composition on the material response as described
in the introduction. The nominal elemental composition of the pyrolysis gases
for TACOT are, in mole fractions, C (0.206), H (0.679), O (0.115). In total,
we have used twenty-seven uncertain parameters in the TACOT material
model. We have attributed 5 to 10 % uncertainty to each of them as follows
(the number in brackets is the label used to identify each uncertainty in the
following of this paper):

• Density (1) and volume fraction (2) of the fibrous preform (5% uncer-
tainty),

• Density (3) and volume fraction (4) of the phenolic matrix (5% uncer-
tainty),

• Virgin’s (5) and char’s (6) permeability (5% uncertainty),

• Pyrolysis model (10% uncertainty):

– Elementary composition of the pyrolysis gases in Carbon (7) ,
Hydrogen (8) and Oxygen (9),

– Pyrolysis reaction 1: pre-exponential factor (10), activation energy
(11), pyrolysis enthalpy (12),

– Pyrolysis reaction 2: pre-exponential factor (13), activation energy
(14), pyrolysis enthalpy (15),

• Thermal properties of virgin material (5% uncertainty): heat capac-
ity (16), orthogonal conductivity (17), radial conductivities (18, 19),
emissivity (20), reflectivity (21),
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• Thermal properties of charred material (5% uncertainty): heat capac-
ity (22), orthogonal conductivity (23), radial conductivities (24, 25),
emissivity (26), reflectivity (27).

We chose to simplify the constraint of elementary fractions summing to
one through maintaining the relative ratios and normalizing the elementary
composition. Practically, given a random draw of the mass fractions yi within
the ±10% interval, normalized mass fractions ỹi = yi∑

k
yk

will actually be given

to PATO.
Moreover, with ε1 and ε2 the uncertain volume fraction of the fibrous

preform and the virgin matrix respectively, the virgin and charred porosities
εv and εc are computed as follows:

εv = 1− ε1 − ε2
εc = 1− ε1 −

ε2
2

Finally, one may note the presence of 3D conductivities in the list of
uncertain parameters, which clashes with the mono-dimensional assumption
made earlier. Such parameters are left in the study to artificially increase
the input dimension and verify the capability of the proposed approach to
detect their null impact and discard them.

3. Sensitivity and uncertainty analysis theory and tools

Let us consider a stochastic differential equation of the form:

L (x, ξ, φ) = f (x, ξ) (1)

where L is a non-linear spatial differential operator (for instance, the steady
Navier-Stokes operator) depending on a set of uncertainties, designated with
the random vector ξ (of dimension the number of uncertain parameters in
the problem) and where f(x, ξ) is a source term depending on x and ξ. In
the following, we drop the dependence on x in order to simplify the notation.
The solution of the stochastic equation (1) is φ(ξ), which is a function of
the space variable x ∈ Rd and of ξ ∈ Ξ = Ξ1 × · · · × ΞN (Ξ ⊂ RN) and
ξ ∈ Ξ 7−→ φ(ξ) ∈ L2(Ξ, p(ξ)), where p(ξ) = ∏N

i=1 p(ξi) is the probability
density function of ξ.
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One of the objective of Uncertainty Quantification is to compute the
statistics of the quantity of interest, i.e. φ(ξ).

We can define the central statistical moment of φ of order n as

µn(f) =
∫

Ξ
(φ(ξ)− E(φ))np(ξ)dξ, (2)

where E(φ) indicates the expected value of φ

E(φ) =
∫

Ξ
φ(ξ)p(ξ)dξ. (3)

In the following, we indicate with σ2, the variance (second-order moment).
We illustrate the main concepts of the ANOVA-decomposition in Section 3.1.
Then, to clearly present the context of uncertainty analysis theory and pro-
vide a comprehensive understanding of the approach followed in this work, we
will use as illustration a mono-dimensional heat transfer problem presented
in Section 3.2. The UQ methods are then described in Section 3.3.

3.1. ANOVA-based decomposition
Let us suppose that the response of a given system of interest can be

represented by a N−dimensional function:

y = φ(ξ) = φ(ξ1, ξ2, · · · , ξN) (4)

We consider Eq. (4) in its functional expansion form as follows

y = φ0 +
N∑

16i6N
φi(ξi) +

N∑
16i<j6N

φij(ξi, ξj) + · · ·+ φ1,2,··· ,N(ξ1, ξ2, · · · , ξN)

or in compact form using a multi index system:

y = φs0 +
2N−1∑
j=1

φsj
(ξsj

) (5)
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The multi indices sj are defined such as

s0 = (0, 0, 0, · · · , 0)
s1 = (1, 0, 0, · · · , 0)
s2 = (0, 1, 0, · · · , 0)
...

sN = (0, 0, 0, · · · , 1)
sN+1 = (1, 1, 0, · · · , 0)
sN+2 = (1, 0, 1, · · · , 0)

...
sN = (1, 1, 1, · · · , 1)

(6)

where N = 2N−1. The representation of Eq. (5) is called ANOVA (Analysis
Of Variance) decomposition [23] of φ(ξ), if for any j ∈ {1, · · · ,N },∫

R
φsj

(ξsj
)p(ξi) dξi = 0 for ξi ∈ {ξsj

} (7)

It follows from Eq. (7) the orthogonality of ANOVA component terms, namely

E(φsj
φsk

) = 0 for j 6= k (8)

ANOVA allows identifying the contribution of a given stochastic parameter
to the total variance of an output quantity. Meanwhile, we obviously have

E(φsj
) = 0 for j = 1, · · · ,N

Note that the terms in the ANOVA decomposition can be expressed as inte-
grals of φ(ξ). Indeed, we have

E(Y ) = φ0
E(Y |ξi) = φ0 + φi(ξi)
E(Y |ξi, ξj) = φ0 + φi(ξi) + φj(ξj) + φij(ξi, ξj)

(9)

and so on, where E(Y |·) denotes the conditional expectation.

3.2. Analytical solution for transient heat transfer
3.2.1. Deterministic problem

Effective heat transfer is the main mode of energy transport in most
porous materials. Let us consider a homogeneous semi-infinite unidimen-
sional medium. Under the assumption of constant material properties, the
transient heat transfer equation is given by

∂tT = α ∂2
x T (10)
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where α = k/(ρ × cp) is the diffusivity. We will consider a medium initially
at the room temperature T (x, t = 0) = T0 = 300 K. Its surface temperature
is held at T (x = 0, t) = Tw = 1646 K during the experiment. Laplace trans-
form is used for its resolution as presented in Appendix A. The temperature
profile as a function of time and space is given by

T (x, t) = T0 + (Tw − T0) erfc
(

x

2
√
αt

)
(11)

where erfc is the complementary error function. The temperature profiles
computed for times of 1, 10 and 60 seconds are plotted in Fig. 3 for a
representative medium of diffusivity of 10−7 m2/s. We will only consider in
the illustrations that follow the first centimeter of the medium. We see here
that the hypothesis that the medium is semi-infinite does not play a role on
the result, as the heat wave hasn’t reached the one centimeter mark after
one minute of heating.

Figure 3: Analytical solution for unidimensional transient heat transfer with fixed surface
temperature, for a semi-infinite medium of thermal diffusivity 10−7 m2/s. Initial temper-
ature of the body: 300 K; surface temperature: 1646 K. Left: temperature profiles for 1,
10, and 60 seconds. Right: error bars in terms of standard deviation when considering
two uncertainties.

3.2.2. Formulation under uncertainty
Let us now formulate the problem presented in Eq. 10 under an un-

certainty quantification perspective. In particular, let assume that two pa-
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rameters are affected by some variability and/or are not well-known: a 5%
of variation in terms of min/max is then imposed on Tw and α considering
a uniform distribution (with respect to the deterministic values previously
used, denoted in the following as Twm and αm, respectively). The problem is
now formulated as follows:

∂tT = α ∂2
x T = αm × (0.95 + (1.05− 0.95) ∗ ξ2) ∂2

x T (12)
where Tw = Twm × (0.95 + (1.05− 0.95) ∗ ξ1), and ξ1, ξ2 vary in [0, 1].

Several methods can be used in order to solve the problem defined in Eq.
12. In this work, we use systematically the so-called non-intrusive methods:
this means that a single deterministic computation (used to solve for example
the differential operator defined in Eq. 10) is replaced with a whole set of
such computations, each one of those being run for specific values of the
uncertain conditions. The final solution can be then written as follows:

T (x, t, ξ1, ξ2) = T0 + (Twm(0.95 + 0.1ξ1)− T0) erfc

 x

2
√
αm(0.95 + 0.1ξ2)t

 .
(13)

Now, let us show how the computation of the variance and the compu-
tation of the contribution of each source of uncertainty can be reduced only
to the computation of some integrals on the analytical solution shown in Eq.
13 for some fixed values of x and t:

The ANOVA functional expansion (more details are provided in the next
subsection) is a unique tool for assessing the contribution of each uncertainty
(and of the interactions) to the global variance. This is computed as follows
(variables x and t are dropped since this does not change the following de-
velopments)

T (ξ) = T0 + Tξ1 + Tξ2 + Tξ1ξ2 , (14)
where

T0 =
∫

Ξ2
T (ξ)p(ξ)dξ;

Tξ1 =
∫

Ξ
T (ξ)p(ξ2)dξ2 − T0;

Tξ2 =
∫

Ξ
T (ξ)p(ξ1)dξ1 − T0;

Tξ1ξ2 = T (ξ)− Tξ1 − Tξ2 − T0.

(15)
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The overall variance σ2 can be computed by means of the ANOVA expansion
as

σ2 = σ2
ξ1 + σ2

ξ2 + σ2
ξ1ξ2 , (16)

where

σ2
ξ1 =

∫
Ξ
T 2
ξ1p(ξ1)dξ1;

σ2
ξ2 =

∫
Ξ
T 2
ξ2p(ξ2)dξ2;

σ2
ξ1ξ2 =

∫
Ξ2
T 2
ξ1ξ2p(ξ)dξ.

(17)

Note that σ2
ξ1 , σ

2
ξ2 represent the unique contribution of ξ1 and ξ2 to the global

variance σ2, respectively. Moreover, σ2
ξ1ξ2 represents the contribution given

by the interaction between ξ1 and ξ2.
Note that only integrals of the expression defined in Eq. 13 are required,

in order to compute the contributions to the variance for fixed values of
(x, t). In Figure 3 (on the right), the solution is then represented in terms of
mean and the associated error bars (square root of the variance, i.e. stan-
dard deviation). Figure 4 illustrates the variance of the temperature t = 60
s, induced by each uncertainty. Note that the contribution Tw is predom-
inant and explains most of the global variability of the temperature. This
simple example illustrates the interest in propagating some physical input
uncertainties through numerical models.

3.3. Non-intrusive formulations for expensive computer codes
Unfortunately, generally, it is not possible to compute an analytical so-

lution of the problem defined in Eq. 1. This could require the resolution of
a complex system of equation, relying on a numerical approximation of the
solution on some discretized grid of the numerical domain. Note then that
computing the integrals of Eq. 17 can be very costly. Moreover, some addi-
tional issues could arise in the presence of a large number of uncertainties or
if the quantity of interest features some discontinuities. The real challenge
is then to formulate an efficient numerical algorithm permitting to build an
accurate representation of the quantity of interest as a function of input
uncertainties.

As previously mentioned, only non-intrusive strategy are targeted in this
work. In particular, here, we tackle a problem featuring a large number
of uncertainties, that can be very challenging to solve, due to the so-called
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Figure 4: Variance of the temperature (including the contribution of each uncertainty) at
a time of 60 seconds.

Curse of Dimensionality. It refers to the loss of convergence and the infeasible
number of calculations needed when the number of parameters increases, for
any chosen method. We have partially cured this problem with a two-steps
approach. First, we applied an anchored-ANOVA approach on the complete
problem. This analysis permits to compute the hierarchy and detect the most
important uncertainties. Note that this approach only needs a very reduced
number of deterministic simulations to perform uncertainty propagation and
sensitivity analysis. In a second step, we applied a Polynomial-Chaos ap-
proach for treating the subspace including only the predominant parameters,
in order to provide a good representation of the quantity of interest in the
reduced stochastic space.

As mentioned before, due to the non-intrusivity of the stochastic methods
considered here, the coupling with PATO, or any other heat and mass transfer
computational model, is very straightforward: it reduces to the creation of
a small interface for building automatically PATO input parameters files for
each set of uncertain conditions.

Both methods are described briefly in the following. For more details,
refer to [24] for the Polynomial-based method and to [25] for the anchored-
ANOVA approach.
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3.3.1. Anchored-ANOVA approach: Definitions and basic notions
In order to introduce the less expensive anchored ANOVA, the Dirac

measure is used for the integrals of Eq. (9):

p(ξi) dξi = δ(ξi − ci) dξi for i = 1, · · · , N (18)

Thus, p(ξ) dξ = δ(ξ − c) dξ. The point c = (c1, · · · , cN) is called “anchor
point”. Hence, the ANOVA component terms in Eq. (9) can be expressed as
follows:

φ(c) = φ0
φ(c|ξi) = φ0 + φi(ξi)
φ(c|ξi, ξj) = φ0 + φi(ξi) + φj(ξj) + φij(ξi, ξj)
...

(19)

The formulae in Eq. (19) are used to quantify the expectation and vari-
ance of the component functions, by simply evaluating the model outputs at
chosen sampling points. For more details, see [25]. This permits a strong
reduction of the computational cost, since this avoids the computation of sev-
eral integrals. Moreover, a variance-based adaptive criterion (see for more
details [26]) is used in order to compute the so-called effective dimension and
to evaluate high-order interactions with a reduced computational cost. The
order at which the ANOVA model is truncated, is called effective dimension,
beyond which the difference between the ANOVA model and the truncated
expansion in a certain measure is very small. This implies that we will ignore
terms in the ANOVA model corresponding to interactions exceeding the fixed
threshold.

In this work, a covariance decomposition of the output variance has been
considered, as proposed in [25], in order to accurately compute the statistics
using the anchored-ANOVA expansion. The covariance decomposition makes
the result less sensitive to the choice of the anchor point if a full expansion
of the anchored ANOVA is employed.

3.3.2. Polynomial-chaos based approach
Under specific conditions, a stochastic process can be expressed as a spec-

tral expansion based on suitable orthogonal polynomials, with weights asso-
ciated to a particular probability density function. The first study in this
field is the Wiener (1938) process. The basic idea is to project the variables
of the problem onto a stochastic space spanned by a complete set of orthog-
onal polynomials Ψ that are functions of random variables ξ. For example,

14



the unknown variable φ has the following spectral representation:

φ (ξ) =
∞∑
i=0

φiΨi (ξ)) . (20)

In practice, the series in Eq. (20) has to be truncated in terms of the polyno-
mial degree p0, where the total number of terms of the seriesM is determined
by:

M + 1 = (N + p0)!
N ! p0! , (21)

where N is the dimensionality of the uncertainty vector ξ. Each polynomial
Ψi(ξ) is a multivariate polynomial form which involves tensorization of 1D
polynomial forms. The polynomial basis is chosen accordingly to the Wiener-
Askey scheme [27] in order to select orthogonal polynomials with respect to
the probability density function p(ξ) of the input. The orthogonality can
be advantageously used to compute the coefficients of the expansion in a
non-intrusive PC framework

φi = 〈φ(ξ),Ψi(ξ)〉
〈Ψi(ξ),Ψi(ξ)〉 , ∀i. (22)

Several approaches can be used to estimate PC coefficients. The approach
used in this study is based on quadrature formula. As a consequence, the
solution of a deterministic problem for each quadrature point is required.

For further details, see Congedo et al.[24]. In both cases, once the chaos
polynomials and the associated φi coefficients are computed, the expected
value and the variance of the stochastic solution φi (ξ) are obtained from:

EPC = φ0 (23)

V arPC =
N∑
i=1

φ2
i

〈
Ψ2
i

〉
(24)

Another interesting property of PC expansion is to make easier sensitivity
analysis based on the analysis of variance decomposition (ANOVA). It can
be easily computed by using some interesting properties of the previous de-
velopment [28]. Let us recall here that the contribution to the variance of a
given random variables with index k, i.e. the first order Sobol’s index, can
be obtained by:

Sk =
∑
i∈α φ

2
i 〈Ψ2

i (ξ)〉
V arPC

(25)
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where α represent the set of indexes associated to a given uncertainty k. For
more details, Ref. [28] is strongly recommended.

4. Results

The Anchored-ANOVA method is applied to the problem presented in
section 2. We present first the convergence analysis with respect to the num-
ber of samples considered to get well-converged statistics of all the quantities
of interest. In Anchored-ANOVA, the first-order analysis is based on a chosen
number of points per direction. We have reported in Table 1 the outcome
of this analysis for the temperature computed at a depth of 1.5 cm at a
time equal to 80s, in terms of decreasing contributions to the variance, for
eight and sixteen points along each direction, respectively (which makes a
total number of runs of the solver of 216 and 432, respectively). As it can
be observed, errors are quite small, indicating that quantities are converged
with only eight points per direction. Same conclusions can be drawn for all
the other quantities of interest considered in this work, i.e. temperatures at
different depths, the virgin front and the char front. Results shown in the
following rely then on this analysis.

Let us now analyse the results from a quantitative and qualitative point
of view. Figure 5 presents the transformation of the ablative material with
error bars, which represent the spreading of the quantities of interest in
terms of standard deviation. The plotted results are the surface recession
- due to ablation - and the propagation of the pyrolysis front. The char
2% and virgin 98% are used in the ablation community to identify almost
completely charred material (2% left of virgin matrix) and almost pristine
virgin material (98% left of virgin matrix). The charring zone is considered
to be between these two accepted limits [16]. Note that, since the heating is
quite soft at the beginning of the simulation, the material is fully pyrolysed
before being ablated. This explains why the char 2% and the wall curves
are clearly separated in this case. The observed variability is very small for
the three curves. In fact, for the virgin 98%, which is the worst case, the
Coefficient of Variation (standard deviation to mean ratio) is of the order of
3%.

A physical analysis of the results is now presented in terms of the con-
tribution of each uncertainty to several quantities, namely the recession, the
virgin front, the char front and the surface temperature, as a function of
time. The results are presented in Figure 6. The uncertainties propagated
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Table 1: Contribution to the variance of each uncertainty and error analysis with respect
to the number of points per direction. Absolute and relative differences are also given.

Unc. Contrib. q16 (%) Contrib. q8 (%) ∆abs ∆rel

24 16.9 16.9 0.0 0.0
3 14.8 14.8 0.0 0.0
4 14.7 14.8 0.1 6.8·10−3

26 9.03 9.01 0.02 2.2·10−3

1 8.31 8.32 0.01 1.2·10−3

2 8.29 8.3 0.01 1.2·10−3

9 7.63 7.64 0.01 1.3·10−3

11 5.13 5.13 0.0 0.0
22 4.05 4.05 0.0 0.0
8 2.88 2.88 0.0 0.0
14 2.88 2.88 0.0 0.0
12 2.48 2.48 0.0 0.0
15 1.48 1.48 0.0 0.0
7 1.15 1.15 0.0 0.0
16 0.166 0.166 0.0 0.0
18 5.05·10−2 5.03·10−2 0.2·10−3 4.0·10−3

10 3.78·10−2 3.78·10−2 0.0 0.0
13 5.81·10−3 5.81·10−3 0.0 0.0
20 6.68·10−4 6.7·10−4 0.2·10−5 3.0·10−3

6 7.22·10−5 7.21·10−5 0.1·10−6 1.4·10−3

5 1.01·10−5 1.04·10−5 0.3·10−6 3.0·10−2

17 0.0 0.0 0.0 0.0
19 0.0 0.0 0.0 0.0
21 0.0 0.0 0.0 0.0
23 0.0 0.0 0.0 0.0
25 0.0 0.0 0.0 0.0
27 0.0 0.0 0.0 0.0
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Figure 5: Recession, char at 2% and virgin at 98% with the ± standard deviation envelope.

on the material properties are in agreements with previous studies [6, 5, 22].
Concerning the recession and the location of the Char 2%, the maximal
standard deviation is of the order of 0.03-0.04 cm. As it can be observed in
Figure 6a and b, the location of the recession and char 2% mostly depend
on both the parameters influencing the heat transfer in the charred material
and the pyrolysis parameters. The virgin 98% is predominantly influenced
by the uncertainty on the Activation energy 1, which controls the initiation
of pyrolysis. Finally, the surface temperature is mostly driven by the char’s
emissivity except at the start of the pyrolysis reaction, where the activation
energies and gas composition are predominant.

We would like to point out a new result. The uncertainty on the elemental
pyrolysis gas composition (Carbon, Hydrogen and Oxygen) clearly induces
variability on the studied quantities. The effect of the these uncertainties is
observed on the in-depth temperature evolution as well, as shown in Figure
7, where the contributions of each uncertainty to the variance of the tem-
perature is computed over the time at different depths in the material. The
standard deviation of the temperature takes the highest value at a depth of
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(a) Recession (b) Char 2% location

(c) Virgin 98% location (d) Temperature, surface

Figure 6: Total variance divided by contributor, computed for several quantities, as a
function of time.

0.7 cm (100 K), while it remains quite small for the other depths considered
here.

With the advancement of the ablation front, contributions of the virgin’s
parameters are quickly overtaken by char’s ones. Parameters of the pyrolysis
reaction and material composition also show decreasing contributions as the
pyrolysis reaction comes to an end.

In order to make more evident the different contributions, Figure 8 il-
lustrates the different contributions gathered in terms of different groups
of uncertainty, i.e. fibers and matrices properties, TACOT’s composition,
pyrolysis parameters, etc.

By using the low-cost sensitivity analysis technique, the hierarchy of the
most important uncertain parameters contributing to the variance of the
temperature can be computed as a function of the depths at a fixed time.
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(a) Temperature, depth= 0.2 cm (b) Temperature, depth= 0.8 cm

(c) Temperature, depth= 1.6 cm (d) Temperature, bottom

Figure 7: Total variance divided by contributor, computed for several quantities, as a
function of time.

(a) Temperature, depth=1.6 cm (b) Temperature, depth = 2.4 cm

Figure 8: Total variance divided by contributor, computed for several quantities, as a
function of time. Here, uncertainties are classified into different groups.
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For example, in Figure 9 we show the hierarchy at a time of 80 s. As it can
be observed, the trend is highly non linear, and this could be particularly
useful to build reliable design margin policies and to guide material model
development efforts.

Figure 9: Hierarchy of the most relevant uncertain parameters to the temperature variance
(sorted: the higher, the bigger Sobol index) as a function of depth at t=80 s.

4.1. Construction of the Polynomial-Chaos based surrogate
As explained in Section 3.3.2, the interest of low-cost sensitivity analysis

technique is twofold. More than only identifying a ranking of main uncertain-
ties, it can be used in order to build a surrogate model (a Polynomial-Chaos
based one in this case) on a reduced set of uncertainties, i.e. the predominant
ones. This is applied here to the temperature computed at a depth of 1.6
cm for different times. Note that this can be easily applied to a whatever
quantity of interest, but the surrogate will be not the same since the most
important uncertainties can be different with respect to the time, the depth
and the quantity of interest.

In the case under consideration, first the uncertainties contributing the
most to the variance of the temperature at different times are computed
(Figure 10 illustrates the ranking for a time t = 80 s where the variance is
maximal).

Secondly, the PC-based surrogate is constructed on a set of input param-
eters defined by the predominant uncertainties. Here, uncertainties labeled
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Figure 10: Sorted contributions at a depth of 1.6 cm and at a time of t = 80 s

as 24, 3, 4, 26, 1, 2, 9, 11 and 22 are chosen as input parameters (See Section
2.2 for identifying each uncertainty).

Obviously, the reduction of the problem yields a loss of accuracy with
respect to the statistics computation, which could be estimated. Variance
reduction is around 11%, which is mainly due to the high number of signifi-
cant parameters, which are neglected in the reduced problem.

Using the surrogate model, a whatever post-processing statistical analysis
can be done for free. As an example, the Probability Density Function (PDF)
of the temperature at different times are computed and represented in Figure
11. As it can be observed, gaussian-like PDF can be observed.

Figure 11: PDF of the temperature at a depth of 1.6 cm at different times.
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One can see here an efficient method for studying TPS response under
uncertainties.

5. Conclusion

The objective of the study was to propagate both material and pyroly-
sis gas composition uncertainties on the thermal response of the TPS of a
spacecraft during atmospheric entry. We chose to study the entry of Stardust
that was the first mission using the new generation of low-density carbon-
phenolic ablators. Due to the high computational cost of varying pyrolysis
gas composition, a low-cost sensitivity analysis technique based on ANOVA
has been used. To clearly explicit the method in the field of material anal-
ysis, analytical derivations of the ANOVA method were presented in the
case of a well known deterministic heat transfer problem - transient conduc-
tion in a solid. Then, a sensitivity analysis technique based on anchored-
ANOVA was presented, permitting to treat problems described by expen-
sive computed codes with several uncertainties. This technique has been
interfaced with PATO, a reactive porous material analysis code distributed
Open Source by NASA (https://software.nasa.gov/software/ARC-16680-1A,
retrieve 26/06/2018). The suite of tools have been shown to be efficient to
propagate uncertainties and to successfully provide parameter hierarchies in
the case of complicated simulations. The clear contribution of uncertainties
of pyrolysis gas composition has been revealed for the first time. Perspectives
of this work consist in using the suite of tool for inverse problems, e.g. use
optimization under uncertainties to optimize material properties for targeted
conditions.
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Appendix A

Detailed demonstrations of the analytical resolution of the transient heat
transfer equation given by

∂tT − α ∂2
x T = 0, (26)

where α is a constant diffusivity, appears to be hard to find in text books.
We will present its resolution using the Laplace transform for a semi-infinite
unidimensional medium, with the following boundary conditions
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• T (∀x, t < 0) = T0

• T (x = 0, t > 0) = Tw

corresponding to a homogeneous medium for which the surface temperature
is suddenly raised. Let us apply a variable change that will simplify the
integration: θ(x, t) = T (x, t) − T0. Applying the change of variable and the
Laplace transform, Eq. 26 rewrites∫ ∞

0
e−st∂2

xθdt−
1
α

∫ ∞
0

e−st∂tθdt = 0 (27)

In the Laplace space, the variable is defined as θ∗ =
∫∞

0 e−stθdt. After per-
mutation (between

∫∞
0 · and ∂2

x·) and integration of the first integral, we
obtain

∂2
xθ
∗(x)− 1

α
[s θ∗(x)− θ(x, 0)] = 0 (28)

Thanks to the change of variable, we have θ(x, 0) = 0 and Eq. 28 simplifies
into

∂2
xθ
∗(x)− s

α
θ∗(x) = 0 (29)

The solution of this second order ordinary differential equation is

θ∗(x) = A exp(
√
s/α x) +B exp(−

√
s/α x) (30)

where A and B are determined with the boundary conditions. On the semi-
infinite domain, we have
• A = 0 as the temperature has to have a limit when x tends towards

infinity.

• θ∗(x = 0) = B. From θ(0, t) = Tw − T0, one obtains B = (Tw − T0)/s
after applying Laplace transform.

Hence, we have
θ∗(x) = Tw − T0

s
exp(−

√
s/α x) (31)

Returning to the temporal space is done using the space change relation:
exp(−a

√
s)/s ⇔ 1 − erf(a/(2

√
t), where erf is the error function. After

some algebra and returning to variable T , we obtain the physical temperature
profile as a function of time

T (x, t) = T0 + (Tw − T0)
[
1− erf

(
x/
√
α

2
√
t

)]
(32)
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