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Abstract The direct proportionality between the flow rate and the pressure
gradient of creeping flows was experimentally discovered by H. Darcy in the
19th century and theoretically justified a couple of decades ago using upscal-
ing methods such as volume averaging or homogenisation. X-ray computed
micro-tomography (CMT) and pore-scale numerical simulations are increas-
ingly being used to estimate the permeability of porous media. However, the
most general case of non-periodic anisotropic porous media still needs to be
completely numerically defined. Pore-scale numerical methods can be split into
two families. The first family is based on a direct resolution of the flow solv-
ing the Navier-Stokes equations under the assumption of creeping flow. The
second one relies on the resolution of an indirect problem - such as the clo-
sure problem derived from the volume averaging theory. They are known to
provide the same results in the case of periodic isotropic media or when deal-
ing with representative element volumes (REV). To address the most general
case of non-periodic anisotropic porous media, we have identified four possible
numerical approaches for the first family and two for the second. We have
compared and analysed them on three-dimensional generated geometries of
increasing complexity, based on sphere and cylinder arrangements. Only one,
belonging to the first family, has been proven to remain rigorously correct in
the most general case. This has been successfully applied to a high-resolution
3D CMT of Carcarb, a carbon fiber preform used in the thermal protection
systems of space vehicles. The study concludes with a detailed analysis of the
flow behaviour (streamlines and vorticity). A quantitative technique based on
a vorticity criterion to determine the characteristic length of the material is
proposed. Once the characterized length is known, the critical Reynolds num-
ber can be estimated and the physical limit of the creeping regime identified.
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Nomenclature

Latin Letters

K permeability tensor [m2]

d velocity deviation tensor [m s−1]
I identity tensor

e pressure deviation term [Pa]
r position vector [m]
U Darcy-scale velocity [m s−1]
u pore-scale velocity [m s−1]
w pore-scale vorticity [s−1]

A interface area [m2]
c artificial compressibility coefficient [m1/2s−1/2]
` reference length [m]
N total number of values predicted by the strategies
P Darcy-scale pressure [Pa]
p pore-scale pressure [Pa]
V Volume [m3]

Greek Letters

δ thickness of the lateral fluid layer used in strategy B and D [m]
ε porosity of the medium
θ rotation angle
µ dynamic viscosity [Pa s]
ρ pore-scale density [kg m−3]
ν kinematic viscosity [m2s−1]

Symbols

∗ non-dimensional variable
∼ deviation term

Subscripts and Superscripts

art artificial
avg average
cl cluster
dg diagonal
f fluid
s solid

Acronyms

CMT Computed Micro-Tomography
PATO Porous material Analysis Toolbox based on OpenFoam
REV Representative Element Volume

Adimensional Groups

Re Reynolds number
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quantity dimensionless variable

length r∗ = r/` and ∇∗ = `∇
velocity u∗ = u/U
pressure p∗ = p`/(µU)

Table 1 Non-dimensional variables for making Eq. (1) dimensionless.

1 Introduction

At the pore scale, the flow of a Newtonian and incompressible fluid in a solid
porous medium is described by the Navier-Stokes equations. Under the as-
sumption of steady-state flow and negligible volume forces, these equations
become 

∇ · u = 0

∇ · (ρu⊗ u)−∇ · (µ∇u) = −∇p
BC : u = 0 at Afs

(1)

where ρ and µ denote the density and the dynamic viscosity of the fluid, u and
p the pore-scale velocity and pressure, and Afs the fluid-solid area interface.
The above system of equations may be written in a non-dimensional form by
introducing the dimensionless variables reported in Table 1. In order to com-
pletely define them, three reference values need to be chosen. In porous media,
the reference velocity, U , is taken as the magnitude of the average velocity in
the domain [1]. For the reference length, `, the choice is not trivial as porous
micro-structures are very diverse and better characterised by different lengths.
The most widely adopted in the modern literature is the porous medium grain
diameter [69]. Once the dimensionless variables have been introduced, Eq. (1)
can be written as

∇∗ · u∗ = 0

Re ∇∗ · (u∗ ⊗ u∗)−∇∗2u∗ = − ∇∗p∗

BC : u∗ = 0 at Afs

(2)

where Re is the Reynolds number defined as

Re =
ρ U `

µ
(3)

The Reynolds number characterizes the relative importance of inertial and
viscous forces within a fluid. For Re� 1, viscous forces dominate and the flow
is said to be in the creeping regime, also known as the Darcy regime. In this
regime, a generalized form of Darcy’s law finds its validity at the macroscopic
scale and the system of Eq. (2) becomes [65]

∇ ·U = 0

U = − 1

µ
K · ∇P

(4)
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Fig. 1 Pore-scale and macro-scale descriptions of the transport problem in porous media.

where P and U are the macroscopic pressure and velocity (see Appendix
A) and K is the permeability tensor. However, when increasing the Reynolds
number inertial forces are no longer negligible and Darcy’s law loses its validity.
Extensions to Darcy’s law have been proposed to capture the physics of inertial
[21,35,66], transition (unsteady laminar) [1], and turbulence regimes [69].

For most engineering applications related to transport processes in porous
media, macroscopic models are used to evaluate the macroscopic pressure and
velocity fields [8,18,22,38,56,61,71]. In this way the physics of the problem
are greatly simplified as shown in Fig. 1. Simplifications come from the in-
troduction of macroscopic properties, such as the permeability tensor, that
enclose information about the microscopic interactions between the flow and
the material. The counterpart is a loss of information: the pore-scale approach
provides the detailed velocity and pressure fields from the direct resolution
of Eq. (1) whereas the macro-scale one only provides averaged (macroscopic)
values of these two fields from the resolution of macroscopic models, such as
the Darcy model presented in Eq. (4). One important advantage that emerges
from the micro-scale studies is the possibility of visualizing the flow behaviour
in digital images. The study of streamlines and pressure gradients throughout
the domain brings very rich insight. This quantitative microscopic information
can be used to better define the characteristic length ` as well as to introduce
physical parameters as transition criterion, such as the maximum local vortic-
ity. This quantity will be used in this article to derive a new criterion for the
validity of Darcy’s law.



6 H. Scandelli et al.

The objective of this work is to establish and validate a numerical strategy to
estimate the anisotropic permeability tensor. This tensor is an essential input
to the macroscopic models. It can be determined in several ways. Obviously,
experiments can be performed to infer the effective properties. To-date, this
remains the most reliable and preferred way [7,44,47,54,60]. With the gener-
alization of super-computers during the last two decades, on the one hand the
developing of pore-network models and the possibility to perform lightweight
simulations on common laptop, on the other hand numerical simulations have
progressively gained popularity for the computation of effective properties [26,
27,34,62]. They are particularly useful to study conditions not accessible in
the laboratory [13]. Digitalized geometries of porous media can be obtained
either by an idealized mathematical representation or by a reconstructed dig-
ital image. In the first case the pore structure is described from a statistical
point of view [24] and then reconstructed by means of small primitive objects
within a finite domain [64]. Finally, numerical simulations can be performed
in order to obtain approximation of the effective properties [17,20,33,63,64].
In the second case actual digital images are obtained, typically by X-ray CMT
[3,39], and simulations can be performed on the precise geometries. Porous
ceramic [25,30,49], metal foams [12,53], fibrous materials [13,46], and rock
samples [51,58], are just some examples of the materials that have already
been analyzed using this approach.

Regardless of the method used to produce the digital image, pore-scale nu-
merical simulations need to be defined in terms of computational domains and
boundary conditions. In this article, we denote as strategy a generic numerical
setting in terms of the considered domain (sample) and the boundary condi-
tions of a pore-scale simulation. It is a well-known fact [23,29,50] that the latter
need to be chosen carefully as they strongly impact the results if the sample
scale is not a representative element volume (REV). The strategies proposed
in the literature are presented in Fig. 2 where computational domains are rep-
resented in two dimensions for an easier comprehension. Different comments
on the strategies may be made:

– The strategies can be split into two families: strategies A [32,42,49,68],
B [29], C, and D1 [5,11,24,29], which aim to determine the permeability
tensor from Darcy’s law where pressure and velocity terms are obtained
by solving the Navier-Stokes equations with Re � 1 and then properly
averaged; strategies D2 [29] and E [11,24,29] which aim to determine the
tensor by solving the closure problem derived from upscaling techniques
[10,65];

– In strategies B, C, D1/2, and E, periodic boundary conditions are imposed
on the pressure deviation (see appendix A) and on the velocity field [29];

– In strategies A, B, and C, the effective domain is enclosed between two
buffer domains in order to avoid inlet/outlet boundary effects. The aver-
aging of the flow properties is performed only inside the effective domain;

– In strategies B, D1, and D2, a layer of pure fluid of a thickness δ is added
between the effective domain and the boundaries in order to enforce pe-
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Fig. 2 2D sketches of the computational domains of the six selected strategies between the
most used in the literature.
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riodic boundary conditions. The thickness, δ, should be large enough to
make the domain periodic, but small enough to avoid any possible influ-
ence on the problem. To be noticed that for periodic domains δ could also
be set equal to zero.

– In strategy E, the domain is made periodic by means of three symmetry
operations (one for each axis); in strategy C, the domain is made symmetric
on the direction orthogonal to the flow (in the figure, planes with normal
vectors in the y and z directions).

The choice of the strategy to adopt depends on the studied porous medium.
This aspect has been highlighted numerous times in the literature. Pickup et
al, 1994 [50], investigated the impact of several flow models on the calculation
of the permeability tensors for sedimentary structures. They demonstrated
that periodic boundary conditions are reliable in the example problems con-
sidered and that in many cases the differences between the various methods
were slight. However, periodic boundary conditions can be considered only for
periodic media or when dealing with volumes large enough to be considered
as REV. For the other cases, a non-periodic strategy needs to be defined.
Manwart et al, 2002 [41], analyzed and compared the accuracy of two differ-
ent numerical algorithms (one based on the lattice-Boltzmann method and
the other on finite-difference techniques) for computing the permeability of
three-dimensional porous media. They argued in favour of the finite difference
code for different reasons. A relevant study on the estimation of the effects of
the boundary conditions on the numerical simulations has been proposed by
Guibert et al, 2016 [29]. They selected strategy A with fixed pressure bound-
ary conditions as the most suitable one in the case of 2D periodic synthetic
porous media. A further step in this analysis has been proposed by Gerke et
al, 2019 [23], where they investigated possible strategies to capture the ten-
sorial nature of the permeability tensor when dealing with periodic stochastic
reconstructions of porous media. They came to the conclusion that strategy
D was the only way to obtain symmetric permeability tensor that preserved
traversal fluxes.

The main objective of this work is to define for the first time a complete numer-
ical procedure to estimate the permeability tensor of non-periodic anisotropic
porous media when dealing with volumes not large enough to be considered
as REV. A mathematical description of the two families of approaches pre-
sented in the introduction is given in Section 2. In Section 3, the six possible
strategies are fully described and down-selected thanks to comparisons against
well-known elementary test cases, such as beds of spheres and cylinders. Ac-
tually, only strategy A was found to provide correct predictions in the most
general case of anisotropic non-periodic porous media. In Section 4, this strat-
egy is applied to estimate the permeability tensor of a carbon fiber preform,
called Calcarb, and compared with data from the literature. This section also
introduces, verifies, and applies a microscopic criterion based on the vorticity
to estimate the limit of validity of the creeping regime. We show that the study
of the vorticity at the pore scale also helps to identify the proper characteristic
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length of the domain. Conclusions of the work are finally presented in Section
5.

2 Mathematical Description of the Two Families of Approaches

As introduced before, there are two families of approaches that can be used
to estimate the permeability tensor.
The first family relies on direct simulations at the pore-scale using Eq. (1).
Pressure gradients and velocity components are then averaged at the macro-
scopic scale and substituted into Darcy’s law. The latter is conveniently de-
composed into the following system

Ux = − 1

µ

(
Kxx∇Px +Kxy∇Py +Kxz∇Pz

)
Uy = − 1

µ

(
Kyx∇Px +Kyy∇Py +Kyz∇Pz

)
Uz = − 1

µ

(
Kzx∇Px +Kzy∇Py +Kzz∇Pz

)
(5)

Following the pore-scale simulations, the components of the macroscopic ve-
locity, Ux, Uy, Uz are obtained as averaged values over the domain and the
components of the pressure gradients across the material, ∇Px,∇Py,∇Pz, are
obtained from the averaged pressure values over the boundaries and the do-
main sizes in the x, y, z directions. The remaining unknowns of the system
are the nine permeability components, namely Kxx,Kxy, ...,Kzz. Therefore,
in order to have a closed system, it is necessary to perform a total of three
simulations by considering three different flow directions. In this way a global
system of nine equations can be defined such as shown in Eq. (6), where the



U1
Dx

U1
Dy

U1
Dz

U2
Dx

U2
Dy

U2
Dz

U3
Dx

U3
Dy

U3
Dz


= −

1

µ



∇P 1
x ∇P 1

y ∇P 1
z 0 0 0 0 0 0

0 0 0 ∇P 1
x ∇P 1

y ∇P 1
z 0 0 0

0 0 0 0 0 0 ∇P 1
x ∇P 1

y ∇P 1
z

∇P 2
x ∇P 2

y ∇P 2
z 0 0 0 0 0 0

0 0 0 ∇P 2
x ∇P 2

y ∇P 2
z 0 0 0

0 0 0 0 0 0 ∇P 2
x ∇P 2

y ∇P 2
z

∇P 3
x ∇P 3

y ∇P 3
z 0 0 0 0 0 0

0 0 0 ∇P 3
x ∇P 3

y ∇P 3
z 0 0 0

0 0 0 0 0 0 ∇P 3
x ∇P 3

y ∇P 3
z





Kxx

Kxy

Kxz

Kyx

Kyy

Kyz

Kzx

Kzy

Kzz


(6)

exponents 1, 2, 3 refer to the first, second, and third numerical simulations.
For simplicity those simulations can be done such that the inlet flow is aligned
with the x, y and finally z directions. Once K is determined from this system,
the symmetry conditions [40] on the extra-diagonal components need to be
applied in order to enforce the equality of two components which may differ
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slightly from each other. To be noted that even if the real unknowns of the
tensor are six, three simulations are required to fully compute them. In order
to solve Eq. (6), the matrix of the pressure gradients should be invertible, that
is, its determinant should be different from zero. In the creeping regime, an
equivalent condition for that is(

U1 ×U2
)
·U3 6= 0 (7)

The second family of strategies is based on upscaling theories to evaluate the
permeability. As long as the same physical hypotheses are used, results coming
from the different techniques are the same [16,52]. In this work we have chosen
to adopt the volume averaging theory. The method leads to the definition of
the following closure problem [10,65]

∇e−∇2d = I in V

∇ · d = 0 in V

BC1 : d = 0 at Afs

BC2 : d(r + li) = d(r), e(r + li) = e(r) i = 1, 2, 3

(8)

where e is the pressure deviation term (see Appendix A) and d the velocity
deviation tensor. BC2 enforces periodic boundary conditions for the two de-
viation components and the permeability tensor is a function of the velocity
deviation tensor as follows

K = − ε 1

V

∫
V

d dV (9)

where ε is the porosity of the medium and V the volume of the flow.

In this work, both volume averaging upscaling and direct simulations at the
pore-scale are addressed using OpenFoam [57] for the simulations and Par-
aview [2] for the post-processing. Navier-Stokes equations are solved with SIM-
PLE [31,48], a steady-state solver for incompressible flow. The closure problem
(Eq. (20)) is solved with KclosureSolver (more information in Appendix B), a
solver that we have implemented and that is released in the Open Source in
the Porous material Analysis Toolbox based on OpenFOAM (PATO) [36,37].

3 Down-Selection of the numerical strategy

We have implemented the six different strategies showed in Fig. 2 with the ob-
jective of verifying their validity on simple test cases to select the most suitable
one. The simple test cases considered are shown in Fig. 3 and presented in the
following sections. Reference values are available in the literature for configu-
rations (a), (b) and (c) [15,55]. We have chosen simple domains with increas-
ing complexity thus allowing us to progressively discard inaccurate strategies.
Strategies needed to be defined in terms of boundary conditions for pressure
and velocity. Different combinations may be considered. Therefore, to be as
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Fig. 3 Six basic test cases with increasing complexity used to apply, compare, and select
the most suitable strategy.

thorough as possible seven sub-strategies have been defined in order to take
all combinations into account. They are summarized in Table 2.

In the following sections, strategies are compared between each other and to
reference solutions. For such purpose, the following relative error is defined

relative error =
1

N

N∑
n

Kref,n −Kn

Kref,n
100 (10)

where Kn is a generic permeability value resulted from the simulation and N
is the total number of values predicted by the strategies. As generic indication,
strategies will be discarded when their relative error is higher than 25%.

3.1 Periodic Cubic Arrangement of Spheres: 1-Sphere Unit Cell

The unit cell of this domain consists of a solid sphere and a cubic fluid zone
(Fig. 3a) thus leading to an isotropic porous medium for which the permeabil-
ity tensor reduces to a diagonal tensor with equal components (K = Kxx =
Kyy = Kzz). Four cases are considered, each one characterized by a different
sphere radius, hence a different porosity.
The permeabilities computed with strategies A (including the 7 sub-strategies),
B, D1, and D2 are plotted in Fig. 4. Strategies C and E are not necessary
here as the domain is already symmetric. Permeability values are conveniently



12 H. Scandelli et al.

fixedValue periodic slip no-slip zero gradient linear gradient
/

u p u or d p or e u p u p u p u p

inlet aaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
outlet

buffer wall
S A1

effective wall
inlet

outlet
buffer wall

S A2

effective wall
inlet

outlet
buffer wall

S A3

effective wall
inlet

outlet
buffer wall

S A4

effective wall
inlet

outlet
buffer wall

S A5

effective wall
inlet

outlet
buffer wall

S A6

effective wall
inlet

outlet
buffer wall

S A7

effective wall
inlet

outlet
buffer wall

S B

effective wall
inlet

outletS C
effective wall

inlet
outletS D1

effective wall
inlet

outletS D2
effective wall

inlet
outletS E

effective wall

Table 2 List of all the strategies considered determining the permeability. Velocity and
pressure settings are indicated respectively in blue and red. For the pressure, zero gradient
means that the pressure gradient normal to the wall is set to zero. For the velocity, the
slip condition preserves the velocity tangential to the wall and sets to zero the normal
component.

made dimensionless with the square of the unit cube dimension. Mesh refine-
ment has been selected after a convergence analysis (see Appendix C). Several
observations can be made:

• Since the domain is symmetric, strategies B, D1, and D2 have been set
with δ = 0. Moreover, always because of the symmetry of the domain,
strategies C and E are identical to B and D2 respectively;
• The relative error between the reference and strategy D1 and D2 is less
than 1%;
• Results from strategies A1 and A2 differ by less than 0.01%. The only

difference between them is that strategy A2 displays a longer convergence
time (doubled). For this reason strategy A2 is discarded in what follows;
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Fig. 4 Dimensionless permeability estimations for the periodic cubic arrangement of spheres
obtained by applying the different strategies defined in Table 1, compared to the reference
values [15,55]. One-sphere unit cell has been considered with increasing radius, thus with
different porosity values. Permeability values have been made non-dimensional by the square
of the unit cube dimension.

• Boundary conditions defined for strategies A3, A5, and A7 are not able to
provide accurate predictions in terms of permeability (relative error higher
than 25%). They are then discarded;

3.2 Periodic Array of Parallel Cylinders With a Face-Centered Square
Arrangement

The unit cell of this periodic orthotropic structure is presented in Fig. 3b.
In this case the permeability tensor is characterized by two different values,
Kxx = Kyy and Kzz, whereas all the extra-diagonal components are equal to
zero. Ten different cases are defined, each characterized by a different value of
porosity. The permeability components are estimated using strategies A1, A4,
A6, B, D1, and D2. After being made dimensionless by the square of unit cube
dimension, they are compared with the reference values in Fig. 5. The domain
is symmetric, so strategies C and E are not considered and δ = 0 for strategies
B, D1 and D2. Strategies D1 and D2 lead again to a similar description of
the problem. Their results differ by 0.1% and that is why we decided to group
them under the generic name of Strategy D. Results from strategy D are very
accurate, the relative error with the reference is always lower than 5%. Due to
its boundary conditions and in particular to the forcing of the periodicity in
one direction only, strategy B is not able to accurately capture the orthotropic
tensor (relative error around 30%). For this reason it has been discarded.
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Fig. 5 Dimensionless permeability estimation for the array of parallel cylinders with face-
centered square arrangement as a function of the domain porosity: a) Kxx=Kyy, b) Kzz.

3.3 Periodic Cubic Arrangement of Spheres: Multiple-Sphere Unit Cell

This arrangement of spheres is produced by cloning several times the single-
sphere unit cell along each direction. Theoretically, the permeability of the
domain is the same regardless of the number of single-spheres considered.
However, due to the effects of the boundary conditions the estimated perme-
ability values differ as it has been observed above. Indeed, by increasing the
domain size, hence the number of spheres, the effect of the boundaries should
reduce and the difference between the true and the estimated permeability
should tend to zero.
The porosity of each unit is constant and equal to ε = 0.875, closer to the
porosities expected for the applications we are targeting. Different cases are
analyzed, each defined by a different number of unit cells along each direction.
In order to make a reasonable comparison, the mesh discretization of a single
cell is kept the same regardless of the total number of cells. This makes the
size of the mesh to exponentially increase every time a unit cell added and we
have stopped after 6 unit cells per direction because of the computational cost.
Strategies A1, A4, A6, and D (with δ = 0) are used to estimate the perme-
ability. Once made dimensionless with the square of the unit cube dimension,
the results are plotted in Fig. 6. Strategies C and E are not considered since
the domain is symmetric. Different observations on the results can be made:

• Strategy D provides constant results with increasing unit-cell numbers,
as expected;
• As expected, strategies A1, A4, and A6 have the tendency to converge

to the results of strategy D, with relative errors given in Table 3;
• Strategy A4 has a non-monotonous converging rate. A possible expla-

nation is that this boundary condition forces the flow to be aligned to the
inlet-outlet axis leading to a wrong velocity field, thus wrong results [24].
By increasing the unit cells in the domain the effects of the boundaries
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Strategy D

Unit Cell Number Per Dimension
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1.1

1.2

1.3

1.4

1.5

Fig. 6 Dimensionless permeability estimations for the periodic cubic arrangement of spheres
as a function of the number of spheres inside one unit cell.

1-Cell 2-Cells 3-Cells 4-Cells 5-Cells 6-Cells
STRATEGY A1 4.8 % 1.3 % 0.22 % 0.31 % 0.45 % 0.48 %
STRATEGY A4 1.17 % 16.3 % 22.8 % 16.4 % 18.0 % 10.4 %
STRATEGY A6 36.5 % 26.5 % 19.6 % 13.9 % 10.4 % 8.1 %

Table 3 Relative errors between strategies A with respect to strategy D for the periodic
cubic arrangement of spheres by increasing the number of unit cells. By increasing the
number of unit cells the relative errors for the different strategies decrease.

start to affect less the field and the estimated permeability converges to
the correct value. This strategy has been discarded.
• Strategy A1 has the fastest convergence. This strategy is the one that

less affects the simulations and hence the results.

3.4 Periodic Cubic Arrangement of Tilted Cylinders

The unit cell of the periodic porous medium, Fig. 3d, consists of a solid cylinder
placed in the middle of the unit cube. It is progressively tilted along the y axes
until a full rotation of 90 degrees. It is the simplest periodic test case capable of
providing extra-diagonal terms in the permeability tensor. Indeed, the latter is
characterized by the three diagonal terms plus the extra-diagonal Kxz = Kzx

components.
Ten different cases are defined, each characterized by a different rotation angle
θ. The dimensionless tensors inferred from strategies A1 and A6 have been
plotted and compared in Fig. 7. Results from the closure problem (strategy
D with δ = 0) are considered here as reference results. Different observations
can be made:

• All the strategies correctly predict (error below 10%) the constant values
of the Kyy component during the rotations;
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Fig. 7 Dimensionless permeability estimation of the periodic cubic arrangement of tilted
cylinders as a function of the orientation angle (θ) for the unit cell of Fig. 3d estimated by
different strategies and compared with results of strategy D.

• Strategy A1 predicts diagonal components with a maximum error of 5%
and extra-diagonal terms within 10% of error. The error has been observed
to remain almost constant for all the rotation angles.
• Strategy A6 correctly predicts the extra-diagonal term (error less than

1%) but not the diagonal ones (higher relative errors with respect of A1).
The symmetric condition for the velocity field on the lateral boundaries
strongly reduces the anisotropy features inside the domain;
• Strategies C and E lead to a good prediction of the three diagonal

components (especially strategy E), but they completely cancel the non-
diagonal term: by construction both of them annihilate the transverse flow
and kill any anisotropy features inside the domain. So, the use of symmetry
operations allow us to use the periodic boundary conditions but at the price
of losing the ability to predict extra-diagonal components. For this reason
these two strategies have been discarded.
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Fig. 8 Dimensionless permeability estimation of the non-periodic cubic arrangement of
tilted cylinders as a function of the orientation angle (θ) for the unit cell of Fig. 3e estimated
by strategies A1 and A6, while strategy D is used as reference only for the three periodic
cases θ = 0◦, 45◦, and 90◦.

3.5 Non-Periodic Cubic Arrangement of Tilted Cylinders

The last basic test case consists of a non-periodic cubic arrangement of tilted
solid cylinders, Fig. 3e. The case is similar to the previous one, with the only
difference that now the domain is non-periodic for most of the values of θ,
thus, it has been possible to check the strategies on a non-periodic domain in
order to be relevant for fibrous media.
As in the previous case, ten different values of the rotation angle are consid-
ered and dimensionless permeability results are plotted and compared in Fig.
8. Strategies A1 and A6 are considered and results are verified by means of
strategy D with δ = 0 only for those angles that make the domain periodic:
θ = 0◦, 45◦, and 90◦. The generic strategy D with δ 6= 0 is found to be unsuit-
able in this study. When having small domains (as in this article) the value of
δ to make it periodic becomes too big with respect to the domain size to avoid
any influence on the results. This strategy has to be discarded for non-periodic
media. Again, strategy A1 leads to a prediction with less than 5% of error in
the three periodic cases, while the other two lead to errors above 40%.

Thanks to these six cases it has been possible to compare the different strate-
gies. Strategy A1 has been proven to be the only suitable one for generic
non-periodic porous materials. It is the only one to predict with a good accu-
racy both diagonal and extra-diagonal terms of the permeability tensor. The
boundary conditions used in this strategy are the ones that less affect the
numerical simulations.
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Fig. 9 Volume rendering of the CMT of Calcarb.

4 Selected Strategy Applied to an Anistropic Non-Periodic
Medium

Now that strategy A1 has been selected to estimate the permeability tensor,
let’s apply it to a real case. The geometry considered is a sample of virgin
Calcarb, illustrated in Fig. 9. Carbon fiber preforms, such as Calcarb [14],
are used as skeleton in heat-shield materials [45,59,70] with average porosi-
ties higher than 85 %. Its micro-structure is generally characterized by fibers
preferentially aligned at about ± 15 degrees with one of the planes and this
gives transverse isotropic properties to the material. The digital representa-
tion of its micro-structure has been acquired at the Advanced Light Source
at Lawrence Berkeley National Laboratory and more details can be found in
Borner et al, 2017 [13]. The resulting dataset (Fig. 9) has a resolution of 200
X 200 X 200 voxels, with a voxel size of 2.6 µm. Moreover, the dataset has
been characterized in terms of volume fraction as a function of the pore-size
in the through-thickness direction, computed using a granulometry method in
Geodict. Fig. 10 shows the results of this analysis and in particular the average
pore-size in the through-thickness direction for the domain can be estimated
to be equal to `avg = 135 µm. We can conclude that the Calcarb dataset an-
alyzed in this paper (Fig. 9) is too small to be a REV of the material: the
size of 520 µm leads to an average of 4 pores for each direction, not enough to
guarantee the domain to be representative.
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Fig. 10 Granulometry analysis done in Geodict [13]. The average pore-size in the through-
thickness direction for the domain can be estimated to be equal to `avg = 135 µm.

4.1 Mesh Convergence Analysis

The mesh has been created by means of the OpenFoam utility snappyHexMesh.
This tool can be considered as a mesh sculptor since it requires an already
existing base mesh (usually created with the blockMesh utility) to chisel it
into the desired mesh. The quality of the resultant mesh strongly depends
on the tuning of different parameters. For the purpose of this simulation, the
parameters are tuned in order to produce a good quality mesh (small values of
skewness and non-orthogonality, and aspect ratio close to one) and to define a
mesh as homogeneous as possible. Once the parameter configuration process is
over, a convergence analysis is required in order to check that the defined mesh
does not influence the results. In order to do that, the behaviour of a physical
quantity should be monitored by repeating pore-scale numerical simulations
with increasingly fine meshes. The pressure difference between the inlet and
the outlet is considered as an appropriate criterion to study the convergence,
since this quantity is strictly related to the permeability estimation. At this
stage these cases will be distinguished by the value of the input velocity and Re
values will not be given. A further analysis will allow the proper choice of the
characteristic length for the definition of the Reynolds number. Three different
inlet velocity values (corresponding to three different Reynolds numbers) are
considered in order to include in the mesh analysis both the creeping and the
inertial regimes. Indeed, to detect the limit of validity of Darcy’s law we need a
good mesh in both regimes. The mesh convergence study has been made with
pressure residuals lower than 10−6 and velocity residuals lower than 10−8. The
results of this study are shown in Figs. 11 and 12. In figure 11 it is possible to
observe how the monitored quantity converges by refining the mesh. Moreover,
for small velocities, cases a) and b), a creeping flow regime is expected thus,
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Fig. 11 Mesh convergence analysis of the digitalized Calcarb domain Fig. 9 characterized
by three different inlet velocity values. The pressure difference between the inlet and the
outlet is studied as the number of cells within the domain increases. Due to a different scaling
in the pressure difference, cases a) and b) correspond to the creeping regime, whereas case
c) to the inertial one.
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Fig. 12 Relative error convergence analysis of the digitalized Calcarb domain Fig. 9 char-
acterized by three different inlet velocity values. Cases a) and b) correspond to the creeping
regime, whereas case c) to the inertial one. Lines with first order slopes have been plotted
to show the convergence order of the numerical method.

the pressure difference results are similar and just scaled between the two
different velocities due to the linearity of the Stokes problem. However, as the
velocity increases, case c), the appearance of inertial effect leads to different
pressure difference relationships, thus scaling the value is no longer sufficient
(see detailed investigation for numerous inlet velocities in the next section).
Simulations a) and b) capture the creeping regime; simulations c) captures
the inertial regime. The mesh convergence analysis is then performed for both
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Fig. 13 Some details of the meshed geometry. The final mesh accounts about 25 million
cells.

regimes. Figure 12 shows the behaviour of the numerical error between two
consecutive simulations

error =
∆Pn+1 −∆Pn

∆Pn+1
(11)

where the index n + 1 indicates the numerical simulation with more mesh
refinement. In the figure the green lines have first order slopes. The numerical
methods is then first order with respect to the discretization. The errors decay
until they stabilize around 10−3 and 10−4 when the grid-size reaches the image
resolution (2.6 µm). Based on this observation we have decided to select the 2
million cells-mesh to proceed with the computation of the permeability tensor.
Some details of the meshed geometry are shown in Fig. 13

4.2 Permeability Tensor

The objectives of this section are two-fold: compute the permeability tensor of
the Calcarb sample and investigate the validity of Darcy’s law corresponding
to the creeping regime at the pore-scale. The strategy has been applied for
different values of the inlet velocity. A chosen from the analysis detailed in
previous sections. The computed permeability components are presented in
Fig. 14. It is possible to notice that when the inlet velocities are higher than
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Fig. 14 Permeability components of the digitalized Calcarb domain by varying the inlet
velocity.

0.1 m/s, the components of the permeability start to decrease. This is due to
the appearance of non-linearity effects. As said in Section 2.1, in order to take
those effects into account at the macroscopic scale, the Forchheimer correction
should be considered. However, for velocities lower than 0.1 m/s, the flow is
in the creeping regime and the predicted tensor is constant and equal to

K =

 1.56 10−10 1.39 10−11 1.02 10−11

1.39 10−11 1.63 10−10 −5.4 10−12

1.02 10−11 −5.4 10−12 1.15 10−10

 m2 (12)

where the average of the extra-diagonal terms (
Kxy+Kyx

2 , Kxz+Kzx

2 , and
Kzy+Kyz

2 )
have been considered to force tensor symmetry. The obtained permeability ten-
sor characterizes just the domain considered and not the whole material and
this makes really difficult to check the results. However, this domain has al-
ready been studied by Borner et al, 2017 [13], by using a different approach1

and by making several simplifications, reducing the tensor to just two scalars:
in-plane and through-thickness components. In order to compare results of
Eq. (12) a diagonalization procedure is required in order to write the tensor
aligned to the principal axes of rotation

K
dg

=

1.74 10−10 0 0
0 1.49 10−10 0
0 0 1.11 10−10

 m2 (13)

and results have a relative difference around 42% with respect to the prediction
obtained by Borner et al, 2017 [13].

1 The computation of the permeability is based on Monte Carlo simulations.
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4.3 Characteristic Length of the Domain

As seen before, the relative importance between inertial and viscous forces
within a fluid is characterized by the Reynolds number (Eq. (3)). Once de-
fined, this parameter allows the determination of the flow regime hence which
equations must be considered for its resolution. The problem is that a char-
acteristic length ` needs to be defined and this choice is not trivial [69]. Both
macroscopic and microscopic information can be considered for its determina-
tion and in this article we propose a new method based on the latter. This
new technique is based on the vorticity vector, which is defined as

ω = ∇× u (14)

It describes the tendency of a flow to rotate. For an incompressible flow this
field is governed by the following equation2

Dω

Dt
= (ω · ∇)u + ν∇2ω (15)

Vorticity is therefore generated close to boundaries where velocity gradients
contribute to the stretching/tilting term (the first source term at the second-
hand side). Once generated, the vorticity diffuses into the entire domain due
to the diffusion term. Due to the linear behaviour of the velocity, the vorticity
increases proportional to the magnitude of the velocity in the creeping regime
since the source term remains the same. However, as soon as the creeping
regime falls, non-linearities in the velocity field change this simple trend. So,
a simple way to check the validity of the creeping regime is to keep under
observation the mean value of the vorticity over the whole domain. To investi-
gate the loss of proportionality of the velocity (linear dependence on velocity)
which exists in the creeping regime, it is possible to consider the dimensionless
vorticity, defined as

ω∗ = ω
`

U
(16)

whose mean value remains constant in the creeping regime.
In order to illustrate this concept, let’s apply it to the 1-sphere unit cell case
showed in Fig. 3a with a high porosity value (ε = 0.875) to simulate the case of
flow around a sphere. This is a well-known case and according to a Reynolds
number computed with respect to the diameter of the sphere, the limit for
the creeping regime is usually set between 0.1 and 0.5 according to different
authors [4,9,43]. As done in section 4.2 for the Calcarb geometry, let’s first
evaluate the permeability value of the high porosity 1-sphere porous medium
for different Reynolds numbers. Then, based on those values, a limit for the
creeping regime can be indirectly estimated by plotting the evolution of the
estimated permeability or of the drag. A change in the slope indicates the
appearance of inertial effect [4,9,43]. The limit can be inferred by directly

2 The vorticity equation has been derived by taking the curl of the transient momentum
equation.
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Re
K∗

∆K∗

|w∗|
∆|w∗|

0.001 0.01 0.1 0.5 1 10 100
0.09911 0.09911 0.09912 0.09918 0.09939 0.11471 0.17641

/ 0.00 % 0.010 % 0.071 % 0.283 % 15.74 % 77.99 %
3.985e+06 3.985e+06 3.985e+06 3.984e+06 3.982e+06 3.801e+06 3.2116e+06

/ 0.00 % 0.003 % 0.025 % 0.070 % 4.63 % 19.42 %

Table 4 Results for the high porosity 1-sphere porous medium case (Fig. 3a) with different
Reynolds number in terms of permeability and mean vorticity over the domain. The ∆
values refer to the quantity difference with respect to the lowest inlet Reynolds case.

Reavg
∆K∗

∆|w|∗

0.01 0.05 0.1 0.5 1 5 10 50 100
/ 0.00 0.005 % 0.008 % 0.1 % 1.2 % 3.52 % 24.0 % 47.1 %
/ 0.00 0.005 % 0.009 % 0.11 % 0.65 % 0.97 % 3.93 % 7.51 %

Table 5 Permeability and mean vorticity variation for the Calcarb geometry as function
of different inlet magnitude velocities. The ∆ values refer to the quantity difference with
respect to the lowest inlet Reynolds case.

evaluating for each simulation the mean vorticity value in the domain. This
technique has the additional advantage of requiring fewer simulations. Results
are shown in Table 4, where the diameter of the sphere has been considered
as the characteristic length of the domain for the Reynolds numbers. As it
is possible to see, both the permeability and vorticity start to change for
Re = 0.1, but a significant variation can be really appreciated after Re = 1.
So, depending on the precision desired, the creeping regime limit could be
set at different Reynolds. One of the main advantages of this method is the
fact that it is possible to identify in the domain the area where the vorticity
presents its maximum values, that is, where non-linearity effects affect more
the flow. In other words, it points to the area of the domain that is first subject
to a transition to a different flow behaviour. This area could be considered
as the physics-based characteristic length of the domain. In this case of the
high porosity 1-sphere porous medium, the vorticity technique identifies the
sphere area, leading to a characteristic length equal to the sphere diameter, as
expected.
Let’s now apply the same method to the Calcarb geometry. Results are shown
in Table 5. The average pore-size length presented in Section 4, `avg = 135 µm,
has been considered as the characteristic length for the computed Reynolds
number denoted Reavg. In the table ∆ is taken as the difference of the quan-
tity between a given simulation and the lowest Reynolds case. Based on the
∆ values it is possible to set the limit for the creeping regime as Reavg be-
tween 1 and 5, depending on the acceptable tolerance. As previously done, the
vorticity can be now used to locate the portions of the domain where non-
linearities effects are dominant. By progressively increasing the velocity in the
domain it is possible to observe that the dimensionless vorticity field assumes
its maximum values mainly inside a specific area in the domain3. This area is
showed in Fig. 15 where on the right it is enlarged and the first obstacle found
in the upwind direction is highlighted in red: a cluster of fibers with diameter

3 For the moment the method is based on a qualitative analysis of the vorticity field. More
analysis with different geometries should be performed to make the analysis more rigorous.
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Lcl~80 [µm] 

flow

Fig. 15 Calcarb dataset characterized in this article, with a red box to highlight a small
area that influences the behaviour of the flow inside the whole domain.

`cl ∼ 80 µm.
A verification on the vorticity analysis is given by a direct observation of

the flow behaviour. By referring to the left of Fig. 15, let’s assume a flow is
coming along the x direction. About halfway through the domain, the flow
faces the big cluster of fibers highlighted in red in Fig. 15. When velocities are
small enough, the flow overtakes the cluster without any particular problem
and therefore continues towards the outlet; with the increase of velocities, a
part of the flow close to the right boundary (Y = 0) starts to move towards
the center of the domain. This behaviour becomes more and more marked
with increasing Reynolds as showed in Fig. 16; when Reavg ∼ 10, two counter-
rotating vortices are formed in the area downstream of the cluster. So, the
flow close to the right boundary, first overtakes the cluster, then feeds the
vortices, and finally spreads towards the center of the domain; by further in-
creasing Reynolds, the high-vorticity flow from the back of the cluster spreads
the non-linearity effects all over the domain and this leads to the formation
of different vortices. Therefore, the area downstream of the cluster is found to
trigger the transition to inertial regime for the whole domain. This cluster of
fibers is the same found through the vorticity field analysis, with a diameter
of `cl ∼ 80 µm. By recalling the average pore-size length `avg = 135 µm pre-
sented in Section 4, it can be easily noticed that the red box is characterized
by a cluster size that is nearly half of the pore domain average.
This analysis allows taking into account the real arrangement of the fibres
inside the domain, however, it is limited to a specific case and with a different
sample all the procedure should be repeated.
The Reynolds number can be defined by using `cl and thus the limits of the
creeping regime [1,19] expressed as

Recl < 0.5 −→ creeping regime
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Fig. 16 Streamlines visualization in the domain and zoom on the characteristic area of the
domain with flow behaviour at different Reynolds number. Streamlines are colored based on
the velocity magnitude.

It should be remarked that this technique investigates the limit of the creeping
regime, that is the weak inertial regime [1] where flows are no longer fully
viscous but still steady. Thanks to it, we are able to provide a physical limit
to the applicability of this study in the estimation of the permeability tensor.
Future analysis and developing on this technique are however necessary.

5 Conclusions

In this work, a numerical strategy has been defined in order to characterize
the dynamic interaction between a flow and a generic anistoropic non-periodic
porous material. Specific attention was paid to the definition of the computa-
tional domain and the boundary conditions by defining different strategies and
comparing their results on simple test cases. Both periodic and non-periodic
geometries were considered in order to be as generic as possible. The selected
strategy is based on the direct resolution of the Navier-Stokes equations under
the assumption of creeping flow in order to estimate the physical quantities
that appear in Darcy’s law and leave the permeability tensor as the only
unknown. In order to close the system and obtain all the components of the
tensor three pore-scale numerical simulations need to be considered. Pore-scale
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simulations in the real geometry bring numerous information such as pressure
gradients and velocity fields. All this information has been used in this article
to introduce a criterion for delimiting the creeping regime with the onset of
the inertial regime. This criterion is based on the vorticity field and it has
been verified and applied to the high porosity 1-sphere porous medium and to
the Calcarb dataset. As showed in the results, the limit strongly depends on
the error tolerance chosen to be acceptable. The analysis of vorticity was also
adopted to define a physics-based characteristic length in the domain which
has been used to define the Reynolds number and its value corresponding to
the onset of the inertial regime. This criterion can be used to train deep learn-
ing techniques in the process of automatic identification of the physics-based
characteristic length in a generic domain. The numerical framework that has
been developed during this study is available in the Porous material Anal-
ysis Toolbox based on OpenFoam (PATO) released Open Source by NASA
(www.pato.ac).
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6 Appendix A. Remarks on the Volume Averaging Method

This appendix has the only purpose to introduce the concepts of the volume
averaging method used in this article. Further details can be found in the lit-
erature [67].
The volume averaging is a technique used to derive continuum-macroscopic
equations for multiphase systems. In this way the complexity of a porous
medium is replaced with an equivalent porous-continuum model in which each
point is characterized by the properties of a representative elementary volume
(REV) centered on it. Within this REV variables can be averaged. Two dif-
ferent definitions of averages have been adopted: the phase average which in
this article has been used for the pressure term

P =
1

Vf

∫
Vf

pdV (17)

and the intrinsic average, used for the velocity field

U =
1

VREV

∫
Vf

udV (18)
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Inside the REV each variable can be decomposed (Gray’s decomposition [28])
as the summation of its average plus a deviation contribution. For the pressure
field this decomposition is as follow

p = P + p̃ (19)

7 Appendix B. KclosureSolver

KclosureSolver is a solver implemented in PATO to solve the closure problem
Eq. (20). By following the work of Anguy and Bernanrd, (1994) [6], transients
terms have been added to the system to improve its stability. The desired
solution is taken at the steady-state. An artificial compressibility, c, and an
artificial viscosity coefficient, µart, are also introduced. The modified transient
problem is as follows

∂d

∂t
+∇e−∇2(µart d) = I in V

∂e

∂t
+ c2∇ · d = 0 in V

BC1 : d = 0 at Afs

BC2 : d(r + li) = d(r), e(r + li) = e(r) i = 1, 2, 3

(20)

The two equations are solved sequentially. Each equation can be iterated in a
loop. The time integration is carried out through an implicit scheme.

8 Appendix C. Mesh Convergence Test Cases

In section 3, numerical simulations on six test cases are presented. The mesh
refinement has been selected after a convergence analysis. By considering the
1-sphere unit cell with porosity ε = 0.55, results of the convergence study
with strategy A1 are presented in Table 6. The error% is evaluated taking into

N Cells 2414 11795 34099 74352 138911 233039 362489 533190
Error % 2.72 1.37 1.02 0.66 0.56 0.01 0.01 /
Vratio 5.431 e-4 6.8 e-5 2.0 e-5 8.5e-6 4.3 e-6 2.5 e-6 1.6 e-6 1.1 e-6

Table 6 Mesh Convergence analysis with strategy A1 for the 1-sphere unit cell case defined
in Section 3 with constant porosity ε = 0.55. The error% is evaluated with respect to the
result of the finer mesh. Vratio is the ratio between the volume of the biggest finite-volume
cell in the domain and the domain itself.

account the permeability estimation of two consecutive simulations as follows

error% = 100
|KFiner Mesh −KCoarser Mesh|

KFiner Mesh
(21)
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The quantity Vratio is the ratio between the volume of the biggest cell in the
domain and the domain itself. From the results in the table we can see that
the convergence of the mesh is immediately achieved since the error is always
decreasing by increasing the refinement. This trend, however, should stop when
the tolerances of the simulation are reached. That is what happens in the table
for the most refined meshes. The resolution of the mesh with 233039-cells can
be then selected for the analysis in section 3.
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